LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

unknown.

M.Sc. DEGREE EXAMINATION – STATISTICS

FIRST SEMESTER - **NOVEMBER 2024**

PST1MC04 - SAMPLING THEORY

	Date: 15-11-2024 Dept. No.	Max.: 100 Marks		
	Time: 01:00 pm-04:00 pm			
SECTION A – K1 (CO1)				
	Answer ALL the questions	$(5 \times 1 = 5)$		
1	Define the following	()		
a)	Inclusion Indicators and Inclusion Probabilities.			
b)	Midzuno Sampling design.			
c)	Systematic Sampling.			
d)	Hansen-Hurwitz Estimator.			
e)	Ratio Estimator.			
	SECTION A – K2 (CO1)			
	Answer ALL the questions	$(5 \times 1 = 5)$		
2	Fill in the blanks			
a)	For any Sampling Design P(.), $V_P[I_i(s)] =$			
b)	An unbiased estimator of Y under random group method is			
c)	In Linear Systematic Scheme, the constant k is known as	·		
d)	The ratio estimator is a particular case of			
e)	The technique is a method used in large-scale surveys to a	ddress the issue of non-response		
	by re-contacting non-respondents.			
SECTION B – K3 (CO2)				
	Answer any THREE of the following	$(3 \times 10 = 30)$		
3	For any fixed size sampling design P(.), prove that			
	(i) $\sum_{j=1}^{N} \pi_{ij} = (n-1) \pi_i$; $i = 1, 2,, N$; $j \neq i$			
	(ii) $\sum_{j=1}^{N} (\pi_i \pi_j - \pi_{ij}) = \pi_i (1 - \pi_i); i = 1, 2,, N; j \neq i.$			
4	Prove that one can have more than one unbiased estimator for a given sa	mpling design.		
5	Explain Lahiri's Method and show that it is a Probability Proportion to S	Size (PPS) selection method.		
6	Show that \hat{Y}_{HHE} is unbiased for Y. Also derive the variance of Hansen-I	Hurwitz Estimator (HHE).		
7	Describe Simmons Randomized Response Technique and derive the var	iance of estimator $\hat{\pi}_A$ when π_Y is		

SECTION C – K4 (CO3)			
	Answer any TWO of the following $(2 \times 12.5 = 25)$		
8	a). Explain the design of Simple Random Sampling Without Replacement (SRSWOR) and describe		
	unit drawing mechanism. (4.5)		
	b). In SRSWOR, show that $\Pi_i = \frac{n}{N}$; $i = 1, 2,, N$ and $\Pi_{ij} = \frac{n(n-1)}{N(N-1)}$; $i, j = 1, 2,, N$. (8)		
9	Under Midzuno sampling Design, show that		
	(i) the first order inclusion probability is $\Pi_i = \frac{N-n}{N-1} \cdot \frac{X_i}{X} + \frac{n-1}{N-1}$, i=1,2, N, and		
	(ii) the second order inclusion probability is $\Pi_{ij} = \frac{(N-n)(n-1)}{(N-1)(N-2)} \cdot \frac{X_i + X_j}{X} + \frac{(n-1)(n-2)}{(N-1)(N-2)}, i \neq j = 1, 2,, N.$		
10	In Stratified Random Sampling, demonstrate that an Unbiased Estimate of Y is $\hat{Y}_{st} = \sum_{h=1}^{L} \hat{Y}_h$. Also,		
	derive the formula for \hat{Y}_{st} , $V(\hat{Y}_{st})$ and $v(\hat{Y}_{st})$ under the design of (i) SRSWOR and (ii) PPSWR.		
11	Derive the Hartley–Ross unbiased ratio type estimator for the population total 'Y'.		
	SECTION D – K5 (CO4)		
	Answer any ONE of the following $(1 \times 15 = 15)$		
12	Explain the concept of Stratified Sampling and discuss Proportional Allocation within this		
	framework. Additionally, derive the variance $V(\hat{Y}_{st})$ under proportional allocation.		
13	Provide a detailed explanation of Warner's Model and derive the estimated variance of $\widehat{\Pi}_A$.		
SECTION E – K6 (CO5)			
	Answer any ONE of the following $(1 \times 20 = 20)$		
14	a). Describe Hurwitz-Thomson (HT) Estimator and show that the estimator \hat{Y}_{HT} is unbiased for Y		
	under any sampling design P(.). (10)		
	b). Verify if \hat{Y}_{HT} is unbiased for 'Y' using (i) the definition of expectation and (ii) an expression		
	involving inclusion indicators under the design $P(s) = \begin{cases} \frac{1}{7} & \text{if } s = \{1, 2\} \\ \frac{3}{7} & \text{if } s = \{2, 3, 4\} \\ \frac{3}{7} & \text{if } s = \{3, 4, 5\} \\ 0, & \text{otherwise} \end{cases}$		
	Given $Y_1 = 4$, $Y_2 = 3$, $Y_3 = 5$, $Y_4 = 2$, and $Y_5 = 7$. (10)		
15	Explain Regression Estimation and derive an approximate expression for both the bias and mean		
	squared error (MSE) of the estimator \hat{Y}_{LR} .		

##